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Lebesgue’s Theorem on Riemann Integrability

We have seen that any function with finite discontinuity is integrable. Also
it is not hard to show that a function with countably many discontinuity is still
integrable provided these discontinuous points converges to a single points. On
the other hand, functions with too many discontinuous points are not integrable.
A typical example is f(x) = 1 if x is rational, and = 0 otherwise. This function
is discontinuous everywhere. In this section we prove Lebesgue fundamental the-
orem characterizing Riemann integrability in terms of the “size” of discontinuity
set.

For any bounded f on [a, b] and x ∈ [a, b], its oscillation at x is defined by

ω(f, x) = inf
δ
{(sup f(y)− inf f(y)) : y ∈ (x− δ, x+ δ) ∩ [a, b]}

= lim
δ→0+
{(sup f(y)− inf f(y)) : y ∈ (x− δ, x+ δ) ∩ [a, b]}.

It is clear that ω(f, x) = 0 if and only if f is continuous at x. The set of
discontinuity of f , D, can be written as

D =
∞⋃
k=1

O(k),

where O(k) = {x ∈ [a, b] : ω(f, x) ≥ 1/k}.

A subset E of R is of measure zero if ∀ε > 0,∃ a sequence of open intervals
{Ij} such that

E ⊆
∞⋃
j=1

Ij,

and
∞∑
j=1

|Ij| < ε.

Proposition 1. The following statements hold.
(a) Any countable set is of measure zero.
(b) Any countable union of measure zero sets is again of measure zero.

Proof. Let E = {x1, x2, ...} be a countable set. Given ε > 0, the intervals Ij =
(xj − ε

2j+2 , xj + ε
2j+2 ) satisfy

E ⊆
∞⋃
j=1

Ij,
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and
∞∑
j=1

|Ij| =
∞∑
j=1

2ε

2j+2
=
ε

2
< ε,

so E is of measure zero. (a) is proved. (b) can be proved by a similar argument.
We leave it as an exercise.

There are uncountable sets of measure zero. The famous Cantor set is one of
them, look up Wikepedia for details. Now, we state the necessary and sufficient
condition for Riemann integrability due to Lebesgue.

Theorem 2 (Lebesgue’s Theorem)
A bounded function f on [a, b] is Riemann integrable if and only if its disconti-
nuity set is of measure zero.

We shall use the compactness of a closed, bounded interval in the proof of
this theorem. Recall that compactness is equivalent to the following property:
Let K be a compact set in R. Suppose that {Ij} is a sequence of open intervals
satisfying K ⊆

⋃∞
j=1 Ij. Then we can choose finitely many intervals Ij1 , ..., IjN so

that K ⊆ Ij1 ∪ · · · ∪ IjN .

Proof. Suppose that f is Riemann integrable on [a, b]. Recall the formula

D =
∞⋃
k=1

O(k).

By Proposition 1 (b) it suffices to show that each O(k) is of measure zero. Given
ε > 0, by Integrability Criterion I, we can find a partition P such that

S(f, P )− S(f, P ) < ε/2k.

Let J be the index set of those subintervals of P which contains some elements
of O(k) in their interiors. Then

1

k

∑
j∈J

|Ij| ≤
∑
j∈J

(sup
Ij

f − inf
Ij
f)∆xj

≤
n∑
j=1

(sup
Ij

f − inf
Ij
f)∆xj

= S(f, P )− S(f, P )

< ε/2k.
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Therefore ∑
j∈J

|Ij| < ε/2.

Now, the only possibility that an element of O(k) is not contained by one of these
Ij is it being a partition point. Since there are finitely many partition points, say
N , we can find some open intervals I ′1, ..., I

′
N containing these partition points

which satisfy ∑
|I ′i| < ε/2.

So {Ij} and {I ′i} together form a covering of O(k) and its total length is strictly
less than ε. We conclude that O(k) is of measure zero.

Conversely, given ε > 0, fix a large k such that 1
k
< ε. Now the set O(k) is of

measure zero, we can find a sequence of open intervals {Ij} satisfying

O(k) ⊆
∞⋃
j=1

Ij,

∞∑
j=1

|Iij | < ε.

One can show that O(k) is closed and bounded, hence it is compact. As a result,
we can find Ii1 , ..., IiN from {Ij} so that

O(k) ⊆ Ii1 ∪ ... ∪ IiN ,

N∑
j=1

|Ij| < ε.

Without loss of generality we may assume that these open intervals are mutually
disjoint since, whenever two intervals have nonempty intersection, we can put
them together to form a larger open interval. Observe that [a, b] \ (Ii1 ∪ · · · ∪ IiN )
is a finite disjoint union of closed bounded intervals, call them V ′i s, i ∈ A. We
will show that for each i ∈ A, one can find a partition on each Vi = [vi−1, vi] such
that the oscillation of f on each subinterval in this partition is less than 1/k.

Fix i ∈ A. For each x ∈ Vi, we have

ω(f, x) <
1

k
.

By the definition of ω(f, x), one can find some δx > 0 such that

sup{f(y) : y ∈ B(x, δx) ∩ [a, b]} − inf{f(z) : z ∈ B(x, δx) ∩ [a, b]} < 1

k
,
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where B(y, β) = (y − β, y + β). Note that Vi ⊆
⋃
x∈Vi B(x, δx). Since Vi is

closed and bounded, it is compact. Hence, there exist xl1 , . . . , xlM ∈ Vi such that
Vi ⊆

⋃M
j=1B(xij , δxlj ). By replacing the left end point of B(xij , δxlj ) with vi−1

if xlj − δxlj < vi−1, and replacing the right end point of B(xij , δxlj ) with vi if

xlj + δxlj > vi, one can list out the endpoints of {B(xlj , δlj)}Mj=1 and use them

to form a partition Si of Vi. It can be easily seen that each subinterval in Si
is covered by some B(xlj , δxlj ), which implies that the oscillation of f in each

subinterval is less than 1/k. So, Si is the partition that we want.
The partitions Si’s and the endpoints of Ii1 , ..., IiN form a partition P of [a, b].

We have

S(f, P )− S(f, P ) =
∑
Iij

(Mj −mj)∆xj +
∑

(Mj −mj)∆xj

≤ 2M
N∑
j=1

|Iij |+
1

k

∑
∆xj

≤ 2Mε+ ε(b− a)

= [2M + (b− a)]ε,

where M = sup[a,b] |f | and the second summation is over all subintervals in Vi, i ∈
A. By Integrability Criterion I, f is integrable on [a, b].


